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Abstract

This study was conducted to assess the potential of hydrotreated vegetable oil renewable diesel 

(HVORD) as a control strategy to reduce exposure of workers to diesel aerosols and gases. The 

effects of HVORD on criteria aerosol and gaseous emissions were compared with those of 

ultralow sulfur diesel (ULSD). The results of comprehensive testing at four steady-state conditions 

and one transient cycle were used to characterize the aerosol and gaseous emissions from two 

older technology engines: (1) a naturally aspirated mechanically controlled and (2) a turbocharged 

electronically controlled engine. Both engines were equipped with diesel oxidation catalytic 

converters (DOCs). For all test conditions, both engines emitted measurably lower total mass 

concentrations of diesel aerosols, total carbon, and elemental carbon when HVORD was used in 

place of ULSD. For all test conditions, the reductions in total mass concentrations were more 

substantial for the naturally aspirated than for the turbocharged engine. In the case of the naturally 

aspirated engine, HVORD also favorably affected total surface area of aerosols deposited in the 

alveolar region of human lungs (TSAADAR) and the total number concentrations of aerosols. In 

the case of the turbocharged electronically controlled engine, for some of the test conditions 

HVORD adversely affected the TSAADAR and total number concentrations of aerosols. In the 

majority of the test cases involving the naturally aspirated mechanically controlled engine, 

HVORD favorably affected carbon dioxide (CO2), nitrogen oxides (NOX), and nitric oxide (NO) 

concentrations, but adversely affected NO2 and total hydrocarbon concentrations, while the effects 

of the fuels on carbon monoxide (CO) concentrations were masked by the effects of DOC. In the 

case of the turbocharged electronically controlled engine, the CO2, CO, NOX, NO, and total 

hydrocarbon concentrations were generally lower when HVORD was used in place of ULSD. The 

effects of the fuels on NO2 concentrations were masked by the more prominent effects of DOC.
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Introduction

Due to mounting concern over various adverse health outcomes that diesel aerosols and 

gases have on the pulmonary system,[1] cardiovascular system,[2] and brain,[3,4] extensive 

efforts are being made to reduce exposures of the general population and workers to diesel 

aerosols. The exposure to diesel aerosols and gases is of particular concern in the confined 

spaces of occupational settings such as underground mines, tunnel construction sites, and 

tracking depots.[5]

Changing the fuel supply from petroleum diesel to alternative fuels is considered to be a 

viable strategy to reduce exposure of workers in underground metal and nonmetal mines to 

diesel particulate matter (DPM).[6] Until recently, the U.S. underground mining industry has 

been almost exclusively using biodiesel fuels made from various vegetable oils and animal 

fats through the process of transesterification.[7] Those fuels are made of long-chain, fatty-

acid methyl esters (FAME). FAME biodiesels are oxygenated fuels with approximately 11% 

oxygen content. Properties of FAME biodiesels are very dependent on feedstock.

The effects of FAME biodiesel and FAME biodiesel blends with petroleum diesel on 

regulated and nonregulated emissions from heavy-duty diesel engines have been previously 

extensively evaluated in laboratories[8–10] and in various environments.[11,12] When 

compared to low sulfur and ultralow sulfur diesels (LSD and ULSD), FAME biodiesel fuels 

were found to reduce mass emissions of total DPM and nonvolatile fractions of DPM[13–17] 

and to be effective strategy for reducing mass concentrations of diesel aerosols, total carbon, 

and elemental carbon in underground mines.[6,16] FAME biodiesels were shown to reduce 

emissions of CO and certain hydrocarbons.[14,18,19] However, the use of FAME biodiesel 

fuels as a control strategy has several potential drawbacks: combustion of FAME fuels was 

found to produce aerosols with smaller median diameters and in some cases higher peak 

concentrations than petroleum diesel fuels.[6–8,20] The FAME biodiesels were also found to 

modestly increase nitrogen oxides (NOX = NO + NO2) emissions, and under certain engine 

operating conditions the particle-bound volatile organic fraction of DPM.[10,16] In addition, 

several studies showed that aerosols produced by diesel engines combusting FAME 

biodiesels in place of petroleum-derived diesel fuels might have higher pulmonary[21–23] and 

reproductive[24] toxicity. The increase in oxidative stress with the use of FAME fuels was 

linked to a larger presence of oxygenated organic species in FAME aerosols than in 

petroleum-derived aerosols.[25] When used in high concentration blends, the FAME fuels 

were known to cause operational problems associated with stability, engine oil dilution, and 

formation of deposits in fuel injection systems.[26]

Alternative renewable fuels to FAME biodiesels are hydrotreated vegetable oil renewable 

diesel (HVORD). These are fuels derived from vegetable and algae oils and animal fats via 

the hydrogenation and isomerization process.[27] HVORD is almost exclusively made of 

paraffinic and iso-paraffinic hydrocarbons and is virtually free of aromatic hydrocarbons, 

metals, sulfur, nitrogen, and oxygen-containing compounds.[7,26,27] When compared with 

ULSD, HVORD fuels have a lower density, a higher cetane number, higher net heat of 

combustion on a mass basis, and lower net heat of combustion on a volume basis.[26]
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Several studies showed that, when compared with EN590 petroleum-derived diesel, 

HVORD, in general, has favorable effects on particulate matter (PM) mass and NOX 

emissions, and minor effects on CO and total hydrocarbon emissions (25,28,29). When 

compared with FAME biodiesel fuels, HVORD produced lower NOX and higher CO, total 

hydrocarbons, and PM mass and number emissions.[28,29] It appears that those effects varied 

widely with the type of engine and engine settings. Several studies showed that regulated 

emissions can be further reduced via optimization of fuel injection and other engine 

parameters.[26,30]

HVORD blends were recently introduced in underground metal mining operations in the 

western part of the U.S. This study was conducted to expand on the limited body of 

knowledge on the effects of HVORD on regulated and unregulated emissions from older 

technology light-duty and medium-duty nonroad diesel engines. This information should 

shed more light on the potential of this fuel as a control strategy for reducing exposure of 

underground miners to diesel aerosols and gases.

Methodology

The aerosol and gaseous emissions for two older technology engines were characterized 

when those engines were fueled with (1) neat HVORD and (2) petroleum-derived ULSD. 

The neat HVORD was supplied by Neste Oil’s Porvoo refinery. The locally acquired ULSD 

was used as a baseline fuel. The results of analysis performed on HVORD and ULSD by 

Cashman Fluids Laboratory (Sparks, NV) are summarized in Table 1.

Two non-road diesel engines were used in this study: (1) a 1999 Isuzu C240 (Isuzu Motors 

Limited), a mechanically controlled, naturally aspirated directly injected light-duty engine 

that conforms to U.S. EPA Tier 1 standards (Engine 1), and (2) a 2004 Mercedes Benz OM 

904 LA, an electronically controlled, turbocharged medium-duty engine that conforms to 

U.S. EPA Tier 2 standards (Engine 2). Those engines were not adjusted to compensate for 

the substantial differences in physical and chemical properties between test fuels. 

Independent studies[26,30] have shown that engines with modifications made to compensate 

for changes in fuel properties, such as increasing injection pressure, theoretically, have the 

potential for relatively minor additional reductions in DPM emissions on top of those 

achieved by using HVORD in place of ULSD. The practices with FAME biodiesel fuels 

showed that mine operators in the U.S. are unlikely to invest into optimization of in-use 

engines to specific fuels.

Engine 1 was retrofitted with a diesel oxidation catalytic converter (DOC) supplied by 

Lubrizol (Purifier; Newmarket, Ontario, Canada). The ECS Purifier is representative of 

DOCs traditionally marketed to the underground mining industry for effective control of CO 

and hydrocarbon emissions. Engine 2 was retrofitted with a DOC supplied by AirFlow 

Catalyst Systems (Model MinNoDOC; Rochester, NY). The washcoat on the metal substrate 

of MinNoDOC was impregnated with a catalyst formulation that was specifically formulated 

to allow for the effective control of CO and hydrocarbon emissions from contemporary 

diesel engines while also controlling NO2 emissions.[31]
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Engine 1 and Engine 2 were coupled to the 150 kW and 400 kW water-cooled eddy-current 

dynamometers supplied by SAJ (Pune, India), respectively. Both engines were tested at four 

steady-state operating conditions (Table 2) and over the transient cycle shown for Engine 1 

and ULSD in Figure 1. The fuel measurements systems supplied by Max Machinery, Inc. 

were used to measure fuel consumption of Engine 1 and Engine 2, respectively.

For all four steady-state operating conditions, Engine 1 generated comparable torque and 

consumed on average slightly more HVORD than ULSD by volume and slightly less 

HVORD than ULSD by mass (Table 2). For I50 and R50 operating conditions, Engine 2 

generated comparable torque and consumed on average slightly more HVORD than ULSD 

by volume and slightly less HVORD than ULSD by mass (Table 2). For I100 and R100 

operating conditions, respectively, Engine 2 generated 4.3 and 4.2% less torque and 

consumed on average slightly more HVORD than ULSD by volume and slightly less 

HVORD than ULSD by mass.

In an attempt to quantify effects of the fuels for conditions more representative of actual 

production scenarios, testing was done for the engines operated over a custom, transient 

mining cycle. This cycle has been recreated from field data to simulate operation of an 

engine in underground mining load-haul-dump vehicles. In the case of transient mining 

cycle tests, on average, Engine 1 generated comparable torque and consumed on average 7.6 

percent more HVORD than ULSD by volume, and consumed a comparable amount of 

HVORD and ULSD by mass. On average, Engine 2 generated 11.5% less torque and 

consumed 2.4% less of HVORD than ULSD by volume and 9.6% less of HVORD than 

ULSD by mass.

The aerosol samplings and measurements were conducted in exhaust diluted approximately 

30 times using a partial dilution system supplied by Dekati, Tampere, Finland (Model 

FPS4000). The results of aerosol measurements shown in this manuscript are normalized to 

a nominal dilution ratio of 30. Triplicate samples for gravimetric and carbon analysis were 

collected from the dilution system using custom-designed sampling systems. The effects of 

fuels on total mass concentrations of DPM were assessed using the results of gravimetric 

analysis. The results of thermal optical transmittance-evolve gas analysis (TOT-EGA) were 

used to study the effects of fuels on total mass concentrations of total and elemental carbon. 

Total number concentrations and size distributions of aerosols in diluted exhaust were 

measured using a TSI Fast Mobility Particle Sizer, Model 3091.[32] In order to enhance the 

clarity of the figures, the aerosol size distributions were fitted with log-normal curves using 

DistFit software from Chimera Technologies (Forest Lake, MN). Total surface area of 

aerosols deposited in the alveolar region (TSAADAR) of human lungs was measured in the 

diluted exhaust using a TSI Nanoparticle Surface Area Monitor (NSAM), Model 3550.[33]

The effects of the fuels on concentrations of CO, CO2, NO, NO2, and hydrocarbons were 

determined using results of measurements in raw exhaust downstream of the DOCs using a 

Fourier transform infrared analyzer (Gasmet, Model DX-4000). The concentrations of the 

following hydrocarbons were combined to obtain total hydrocarbon concentrations: ethane, 

propane, butane, pentane, hexane, octane, ethylene, acetylene, propene, 1,3-butadiene, 

formaldehyde, acetaldehyde, benzene, and toluene.
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Three 2-hr test runs were executed for each combination of fuels and engine operating 

conditions. The filter samples for gravimetric and carbon analysis were collected for the 

duration of each of the tests. Size distributions, TSAADAR, total number concentrations, 

and concentrations of criteria gases were measured concurrently. However, only data 

collected during the last 30 min of each test were used to calculate the averages and standard 

deviation of means presented in this article.

Results

Aerosol emissions

The results of gravimetric and carbon analyses were used to calculate the total mass 

concentrations of DPM, total, and elemental carbon in diluted exhaust (dilution ration of 30) 

of Engine 1 (Figure 2a) and Engine 2 (Figure 2b). In order to compensate for slight 

variations in dilution rate, the values were normalized to a dilution rate of 30. In all cases for 

Engine 1, the average total mass concentrations of DPM, total, and elemental carbon were 

reduced by more than 39% when the engine was fueled with HVORD in place of ULSD. 

The magnitude of reductions was similar for all but the R100 conditions, for which HVORD 

provided substantially higher advantages. In the Engine 2 tests, the average reductions in 

total mass concentrations of DPM, total, and elemental carbon for HVORD compared to 

those for ULSD were somewhat lower than those observed for tests conducted using Engine 

1. The reductions were between 13 and 24% for all but the I50 condition. For this condition, 

the effects of fuels on the mass emissions between fuels were not practically discernable.

For both test fuels, the elemental carbon was found to make up over 85% of the total carbon 

emitted by Engine 1 and Engine 2 (Figure 3). For the majority of Engine 1 cases, the average 

fraction of elemental carbon in total carbon was slightly higher for HVORD than ULSD. 

The exception was the ULSD I100 condition, where a higher fraction of elemental carbon in 

total carbon was observed for ULSD than for HVORD. For the majority of Engine 2 cases, 

the fraction of elemental carbon in total carbon was comparable or slightly higher for 

HVORD than for ULSD.

The TSAADAR in the diluted exhaust of Engine 1 and Engine 2 for ULSD and HVORD are 

shown in Figure 4. For the tests where Engine 1 was operated at I100, concentrations in the 

diluted exhaust substantially exceeded the upper measurement range of the NSAM 

instrument (10,000 μm2/cm2), and therefore were not reported. For the other three test 

conditions conducted using Engine 1, the use of HVORD favorably affected TSAADAR. 

The highest average reduction of 41% in TSAADAR was observed for the R100 conditions. 

For Engine 2, the use of HVORD adversely affected TSAADAR for I50 conditions, and did 

not have a measurable effect on TSAADAR for I100, R50, and R100 conditions. The 

average increase in TSAADRA of 35 percent was observed for the I50 conditions.

The results of direct measurements of total number concentrations with the FMPS for 

Engine 1 and Engine 2 tests are summarized in Figure 5. In the case of Engine 1, the use of 

HVORD favorably affected total number concentrations of aerosols. The highest average 

reduction (28%) in total number concentrations was observed for the R50 conditions. In the 

case of the test conducted on Engine 2, the use of HVORD adversely affected total number 
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concentrations for the I50 and R100 conditions, and did not have a measurable effect on 

total number concentrations for the I100 and R50 conditions. The highest increase in total 

number concentrations (25%) was observed for the I50 conditions.

The effects of the fuels on size distributions of aerosols were examined via the results of 

selected measurements performed in diluted exhaust from Engine 1 and Engine 2 (Figure 6). 

The concentrations were normalized to dilution ratio of 30. For both tested fuels, aerosols 

emitted by Engine 1 and Engine 2 were distributed in single accumulation mode (Figure 6 

and Table 3). For Engine 1, the size distributions for the HVORD tests were characterized 

with the smaller count median diameters (CMDs) and lower total and peak concentrations of 

aerosols by comparison to the corresponding ULSD tests (Figure 6a and Table 3). For 

Engine 2, the aerosols emitted while the engine was supplied with HVORD in place of 

ULSD were characterized with the smaller or equivalent CMDs and higher or equivalent 

total and peak concentrations of aerosols (Figure 6b and Table 3).

Gaseous emissions

The CO2 concentrations in the exhaust from Engine 1 and Engine 2 were slightly lower for 

HVORD than for ULSD (Figure 7). The lower CO2 emissions corresponded with the lower 

mass fuel consumption of HVORD than ULSD (Table 2).

For all test conditions, the DOC retrofitted to Engine 1 was found to be much more effective 

in oxidizing CO and NO2 than the one retrofitted to Engine 2. The resulting DOC-out 

concentrations of CO in the exhaust of Engine 1 were very low and it was not possible to 

quantify the effects of fuels, if any, on CO emissions. In the case of Engine 2, for the I50 and 

R50 engine operating conditions, the CO concentrations were 51 and 41%, respectively, 

lower when HVORD was used in place of ULSD (Figure 7b). In the case of the I100 and 

R100 conditions, the CO emissions for HVORD were quite comparable to those for ULSD.

With the exception of the case when Engine 1 was operated at the R50 conditions, HVORD 

favorably affected NOX concentrations (Figure 7c). Since for all test conditions NO made up 

the major fraction of NOX, the effects of the fuels on NO emissions were quite similar to the 

effects of those on NOX emissions (Figure 7d). The reductions in average NOX and NO 

concentrations were up to 20 and 30%, respectively.

Since the DOC retrofitted to Engine 1 was very effective in oxidizing NO to NO2, the NO2 

levels in the exhaust of Engine 1 fueled with ULSD, particularly when operated at the I100 

and R100 conditions, were relatively high. The NO2 concentrations were found to be even 

higher when HVORD was used in place of ULSD (Figure 7e). Since the NO2 concentrations 

in the exhaust of Engine 2 were generally very low and the DOC retrofitted to Engine 2 was 

not very effective in oxidizing NO to NO2, the resulting DOC-out concentrations of NO2 for 

Engine 2 were too low to allow for quantification of the effects of fuels on NO2 

concentrations.

In the case of Engine 1, HVORD produced higher total hydrocarbon emissions than ULSD 

for the I50, I100, and R100 conditions, while total hydrocarbon emissions were lower for the 
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R50 conditions. HVORD slightly reduced concentrations of total hydrocarbons in DOC-out 

exhaust of Engine 2 for all conditions.

Discussion

According to the results of this study and similar results reported elsewhere,[26,28,29] fueling 

diesel-powered vehicles with HVORD in place of ULSD should result in lower total mass 

concentrations of DPM, total, and elemental carbon emitted. However, based on the results 

of concurrent testing of two different types of engines, this study uniquely demonstrated that 

the reductions in total mass concentrations could differ between a naturally aspirated 

mechanically controlled (Engine 1) and a turbocharged electronically controlled engine 

(Engine 2) operated under similar conditions.

The effects of HVORD on TSAADAR and total number concentration of aerosols were 

found to be substantially different between the tested engines and engine operating 

conditions: for all test conditions, HVORD reduced TSAADAR and total number 

concentration of aerosols in the exhaust of Engine 1. With the exception of the R100 

conditions, HVORD increased TSAADAR aerosols in the exhaust of Engine 2. The use of 

HVORD also adversely affected total number concentration in the exhaust of Engine 2 for 

I50 and R100 conditions, but not for I100 and R50 conditions. The differences in the CMDs 

of aerosols in the exhaust of both engines for HVORD and ULSD were rather minor.

The results on the effects of HVORD on regulated gaseous emissions are in general 

agreement with results of previously published studies.[26,28–30] However, the majority of 

those studies reported effects of the NOX emissions, but none reported separately the effects 

on two major NOX components: NO and NO2. Due to the relatively high toxicity[34] and 

technical and economic issues related to ventilation, the NO2 emissions are of particular 

concern in the case of confined occupational environments. This study showed that HVORD 

has the potential to adversely affect NO2 emissions from naturally aspirated engines 

equipped with certain types of DOCs.

Conclusion

This study showed that fueling vehicles powered with older technology diesel engines with 

HVORD might help current efforts to reduce workers’ exposure to diesel aerosols and 

transition toward more universal solutions to this issue provided by advanced engine 

technologies.[35,36] However, further investigations are needed to expand on the limited 

knowledge[28] available on the health outcomes associated with exposure to these aerosols 

and gases.
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Acronyms

ACGIH American Conference of Governmental Industrial Hygienists
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API American Petroleum Institute

ASTM ASTM International, an international standards organization that develops 

and publishes voluntary consensus technical standards

CMD count median diameter

CO carbon monoxide

CO2 carbon dioxide

DOC diesel oxidation catalytic converter

Dp particle diameter

DPM diesel particulate matter

FAME fatty-acid methyl esters

FMPS Fast Mobility Particle Sizer

HVORD hydrotreated vegetable oil renewable diesel

I50 intermediate speed 50% load (ISO M8)

I100 intermediate speed 100% load (ISO M6)

ISO International Organization for Standardization

LSD low sulfur diesel

MSHA Mine Safety and Health Administration

N Number

NIOSH National Institute for Occupational Safety and Health

NO nitric oxide

NO2 nitrogen dioxide

NOX nitric oxides (NOx = NO+NO2)

NSAM Nanoparticle Surface Area Monitor,

OMSHR Office of Mine Safety and Health Research

PAH polycyclic aromatic hydrocarbons

R50 rated speed 50% load (ISO M3)

R100 rated speed 100% load (ISO M1)

SAE Society of Automotive Engineers

SCR selective catalyst reduction
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TC total carbon

TLV threshold limit values (ACGIH)

TOT-EGA thermal optical transmittance-evolve gas analysis

TSAADAR total surface area of aerosols deposited in the alveolar region of human lungs

ULSD ultralow sulfur diesel

U.S. EPA U.S. Environmental Protection Agency

UV Ultraviolet

σ log-normal distribution spread
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Figure 1. 
Transient mining cycles for Engine 1 fueled with ULSD.
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Figure 2. 
Effects of the fuels on total mass concentrations of diesel aerosols in diluted exhaust 

(dilution ratio of 30): (a) gravimetric DPM, total carbon (TC), and elemental carbon (EC) for 

Engine 1, (b) gravimetric DPM, TC, and EC for Engine 2, (c) changes in total mass 

concentrations for Engine 1, and (d) changes in total mass concentrations for Engine 2.
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Figure 3. 
Effects of the fuels on split between carbon fractions: (a) Engine 1 and (b) Engine 2.
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Figure 4. 
Effects of the fuels on TSAADAR: (a) TSAADAR in diluted exhaust (dilution ration of 30) 

of Engine 1, (b) TSAADAR in diluted exhaust (dilution ration of 30) of Engine 2, and (c) 

changes in TSAADAR for Engine 1 and Engine 2.
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Figure 5. 
Effects of the fuels on total number concentrations in diluted exhaust (dilution ration of 30): 

(a) Engine 1, (b) Engine 2, and (c) changes for Engine 1 and Engine 2.
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Figure 6. 
Effects of the fuels on sized distribution of aerosols in diluted exhaust (dilution ratio of 30) 

of: (a) Engine 1 and (b) Engine 2.
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Figure 7. 
Changes in concentrations of criteria gases emitted by Engine 1 and Engine 2: (a) CO2, (b) 

CO, (c) NOX, (d) NO, (e) NO2, and (f) total hydrocarbons.
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Table 1

Fuel properties.

Fuel Property Test Method ULSD HVORD

Aromatics [vol %] ASTM D1319 24.2  <5.0  

Olefins [vol %] ASTM D1319 1.6  1.2  

Saturates [vol %] ASTM D1319 74.2  >95.0  

Flash Point, Closed Cup [K] ASTM D93 335.7  359.8  

Sulfur, by UV [ppm] ASTM D5453 7.4  0.0  

Viscosity @ 40°C [cSt] ASTM D445 2.4  3.0  

Sim. Dist., 50% Recovery [K] ASTM D2887 505.0  562.0  

Sim. Dist., 90% Recovery [K] ASTM D2887 608.6  585.9  

Cetane Index ASTM D4737 43.9  93.2  

Cetane Number ASTM D613 44.5  75.2  

Density [kg/m3] ASTM D1298 0.84 0.78

Heat of Combustion [MJ/kg] ASTM D240 50.1  50.7  
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